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Critical behavior of nonequilibrium models in short-time Monte Carlo simulations
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We analyze two alternative methods for determining the dynamic critical expargérihe contact process
and the Domany-Kinzel cellular automaton in Monte Carlo simulations. One method employs mixed initial
conditions, as proposed for magnetic mod@lbys. Lett. A298 325(2002]; the other is based on the growth
of the moment ratian(t)=(p?(t))/{p(t))? starting with all sites occupied. The methods provide reliable esti-
mates forz using the short-time dynamics of the process. Estimates; aire obtained using a method
suggested by Grassberger.
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I. INTRODUCTION is not given by a Boltzmann distributiof8,4]. The order

The dynamics of spin models quenched from high tem_parameter is the activity density=0, given by p(t)

d
perature to the critical point is a subject of considerable cur=LZiz;01=0, wheres;=1(0) corresponds to the presence
rent interest, because the initial phase of the relaxatiom  (absencpof activity at sitei (d is the dimensionality of the
so-called short-time dynamigsarries important information  System. (Activity at site is commonly associated with the
about static and dynamic critical behavidi]. Using a phe- presence of a “particle)’For such models the following scal-
nomenological renormalization group analysis, Janssering law [3] has been conjectured:
Schgub, and Schmittmanj2] demonstrated 'Fhe follqwing p(t) ~ TAE((p - p) YN, pot? 1), (3)
scaling law for the order parameter at the critical point:
) wherep is the initial densityp is a temperaturelike control
(M)(t) ~ mgt”, 1 parameterp, is its critical value, andN=LY is the number of
characterized by the new critical exponent(Here (-) de- sites. The exponeng is associated with the dependence of
notes an average over initial configurations consistent wittihe stationary value op on the control parametep~ (p
initial magnetizationm,, and over the noise in the stochastic ~Pc)”, while » andv, are the critical exponents associated
dynamics) Relation (1) holds for timest<ty.,~mg?*, ~ With the correlation time(§~|p—p/™) and correlation
wherez is the dynamic exponent ang its anomalous di- length (¢, ~|p—pg™+). Given the defining relatiog; ~ &,
mension. The “critical initial slip” described by Eql) the dynamic exponert=y/v,. Letting p— p, and N—o»,
emerges from an initially disordered state, and is charactewe expect the scaling functiof in Eq. (3) to have the
istic of a stochastic, far from equilibrium relaxation process.property

This approach also offers a way to determine staic criti- u u=0
cal exponents, since the scaling argument used to deduce Eq. f[o,ou]=1 , (4)
(1) can also be applied to higher moments of the order pa- C, u—w
rameter, yielding whereC is a constant.
(MKY(t,mg) = L™%87(M) (L%, Lomy). ) In a realization of the process at criticalifg=p.) begin-

ning with a completely filled latticépy,=1), the activity den-
Models with absorbing states exhibit scaling behavior akity decays via the power lap(t) ~t# for t<LZ On the
the critical point marking the transition between active andyther hand, in realizations starting with only a single particle

absorbing stationary states, even though the stationary stagg active site (spreading process the average number
of particles increases with timep(t)~t?, where 7

=(dvi _2,8)/ V”.
*Corresponding author. Electronic address: rdasilva@inf.ufrgs.br An interesting crossover phenomenon in the evolution of
"Electronic address: dickman@fisica.ufmg.br p(t), between the initial increasé~t”) asymptotic decay
*Electronic address: drugo@usp.br (~t™#""l), emerges in a critical spreading process with low
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initial particle density. The crossover tinyeis related to the w(1— 0:n) = 1 (annihilation. (9)

initial density py via . . .
The model suffers a continuous transition at a critical value

to ~ pg At (5) A in one dimension\.=3.297 8%8) [4].

As described in Refd4,8], our simulations employ a list
of occupied sites and sample reweighting to improve effi-
ciency. Since the choice of sites is restricted to the occupied
set, the time incrementt associated with each eveganni-
hilation or creation is 1/N,, whereN, is the number of
el6’ccupied sites immediately prior to the event. A given real-
ization of the process ends at a predetermined maximum
time, or when all particles have been annihilated. Reweight-
9ng is used to study the effects of window sizén Eq. (8),
in determiningy, for the CP, usingg=1/L.

A process starting with a single particlg,=21/L) corre-
sponds tgy— 0 for large lattices, so that diverges and the
spreading regime(t) ~t7 extends over the entire evolution.
For correlated initial conditions the evolution follows a
power law intermediate between the extreme cases m
tioned abovd5].

A method for determining the critical exponentpro-
posed in the context of the short-time behavior of magneti
models[6], suggests that we consider the function

(P)po=11L0 The Domany Kinzel (DK) cellular automaton is a
Fot) = + (6) discrete-time process exhibiting a phase transition between
<p>P0=1 an active and an absorbing phase of the same kind as in the

CP[10Q]. Each site of the lattice can be in one of two states,
o;=1 (active) or ¢;=0 (inactive. The transition probabilities

for oi(t) given the values of its neighbors,,(t—1) are:
P(1/0,0=0, P(1|1,0=P(1|0,1)=p, and P(1]1,1)=q.

This model has a line of continuous phase transitions sepa-

which has the asymptotic behavib(t) ~t4/"1=t2 Thus
we can obtairz by analyzing short-time simulation results
with mixed initial conditions.

In this paper we employ this approach to calculater
the contact proceg€P) and the Domany-Kinzel cellular au- X ¢ i -
tomaton(DK), both known to belong to the universality class "ating the active and absorbing phases in pkg plane. For
of directed percolatiofi4]. We note that in the literature on 9=P(2—P) the DK model is equivalent to bond directed per-
absorbing-state phase transitians commonly used to de- colation (DP), with p.=0.644 700. The critical behavior
note the exponent governing the growth of the mean-squar%l_o”g the trangltlon line fall§ in the DP universality (?Iass,
distance of particles from the original seed, in spreadingVith the exception of the poim=1/2,q=1, corresponding
simulations. To avoid confusion we denote the latter expol® So-called compact DF10,11.
nent asZ, so thatR?~t%. The dynamic exponent is then

related to the spreading exponent ¥@2/Z. . RESULTS
A method to estimate the exponentwas suggested by )
Grassbergef7], who used the relation We _study the tlme-dgpend_ent order-paramet_er moments
{pX(t)) in Monte Carlo simulations of the one-dimensional
D(t) = dinp ~ iz 7y DK and CP, obtaining time serie(;a(t)}pO:l,L and (p(t)), =1,
P | p=p, for the two initial conditions described above. Note that

] ) ] o ] these quantities are evaluated over the sample of realizations
where in a simulation the derivative is evaluated numericallysyryiving at timet. They then are combined to yiefd, de-

via fined in Eq.(6).
1 {p(pe+h) In these simulations we used systems of dize4096
Dm:%”‘(ﬂ)' (8)  sites in Ng=50000 independent realizations, extending to
C

tmax=1000. The evolution oF, for the two models is shown
which evidently requires data for values pfslightly off  in Fig. 1.

criticality. In this context a reweighting scheme that permits To determinez we divide the evolution into subintervals
one to study various values @f in the same simulation is equally spaced in In (This avoids placing an unduly large
particularly convenienf8]. weight on longer times, as would occur if each integer time

In the following section we present details on the modelgvere treated as a separate data ppAualyzing our results,
and our simulation technique. In Sec. Il we report and anawe find z=1.5811) for both the CP and the DK cellular
lyze the simulation results, and in Sec. IV present our conautomaton. These results are in agreement with previous re-
clusions. sults on DP[z=1.580 74510) [12]] obtained via a low-
density expansion, and on the C21.580772)] from exact
diagonalization of the master equatifiB].

The contact process was introduced by Harris as a toy The local slopez can be estimated from a least-squares
model of epidemic propagatid®]. It evolves in continuous linear fit to the data shown in Fig. 1; it is plotted versi§
time. Denoting the number of occupied nearest neighbors d being the geometric mean of thealues over the subinter-
site i by nj==;_0j, where (i) denotes the set of nearest vals. The exponents and v are similarly obtained, and an
neighbors of site, the transition rates are extrapolationt;* — 0 is performed. In Fig. 2 we show this
extrapolation for the CP and DK, showing convergence to-
wardsz~1.581.

The ratio

IIl. MODELS AND SIMULATION METHOD

AN
w(0 — 1;n) = — (creation,
(0—1;n) 2d( n
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FIG. 1. Time evolution of thé, in the CP and the DK cellular
automaton.

PO

T

(10)

converges to the expected value for models in the DP un

versality classm,,=1.174 for DP in(1+1) dimensiong14].
At short times,m-1=vai(p)/{p)? increases as a power law.
The associated exponent is found by noting that

t—oo

x = L%ar(p) ~ t’g[(p—p)"t] = (p—po)? (11

so that g(x)~x""" for large x. Observing that¢=y/y,
=(dv, —2B)/ v, and that(p)~t#", we expectm-1~t¥z
Our simulations of the CRL=5000,Ns=10000Q confirm
the anticipated power law, and yiefk1.57747).

In the determination ofy, via EQ. (8), we usedty,y
=2980, and a total of th&l;=10 000 realizations. Figure 3
shows the nuerical derivative(t). For the DK cellular au-
tomaton, using systems bf=8192 sites ancah=0.0002, we

obtain »,=1.73%9), by extrapolating the effective exponent

y(t) to t—oo, consistent with the expected valug
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FIG. 3. Plot of time evolution oD(t), Eq.(8), in the CP and the
DK cellular automaton.

tive to the intervalAh used in the analysis. For example,
usingAh=0.002 we obtainy=1.65, far smaller than the ac-
cepted value.

" In the implementation of Eq8) to the CP, we used the
reweighting method proposed in R¢8]. Systems of 8192
sites are again used. The sample of realizations generated at
\¢ is reweighted for nearby valuei +nég, wheren is an
integer, so thatAh=2nés. As before, we analyze the local
slope y(t) as a function of 1t. The last ten points of each
curve are extrapolated to t-~0 to estimatey,. For Ah
=0.0002 the value found via extrapolationijs=1.7348), in
agreement with the accepted value. The influencAlobn
the estimate fow, is shown in Fig. 4, showing convergence
to the expected value of 1.734.

IV. SUMMARY AND CONCLUSIONS

We apply several simulation methods based on analysis of
short-time behavior to determine the critical exponerasd

=1.733 8476) [4,12. We find that the result is quite sensi- v, in models exhibiting a continuous phase transition to an
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FIG. 2. Effective exponent(t) vs 1/ in the CP and the DK
cellular automaton. Note the convergence4e1.58 in both cases.
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FIG. 4. Plot of y in the CP as a function oh, where
Ah=2né.
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absorbing state. The methods involve the ratiest) We believe that the methods investigated here will be use-
=(P)pg=1n9! (PY5 =1 andm(t):<p(t)2>p0=1/<p(t)>§0:l, aswell as ful in the analysis of other models with absorbing states, in
the derivativeD(t) defined in Eq(7). We find these methods particuilar, in.establishing the un?versality class using short-
to be quite useful determining critical exponents, since theyime simulations, which are typically less computationally

yield estimates in good agreement with accepted values fd#emanding than studies of the stationary process.

the CP and the DK cellular automaton, using relatively short

simulations. We note that in the implementation of Ef).to

determiney, care must be taken to use an increntfetitat is ACKNOWLEDGMENTS
sufficiently small. One should in fact study several values of
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