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We analyze two alternative methods for determining the dynamic critical exponentz of the contact process
and the Domany-Kinzel cellular automaton in Monte Carlo simulations. One method employs mixed initial
conditions, as proposed for magnetic models[Phys. Lett. A298, 325(2002)]; the other is based on the growth
of the moment ratiomstd=kr2stdl / krstdl2 starting with all sites occupied. The methods provide reliable esti-
mates forz using the short-time dynamics of the process. Estimates ofni are obtained using a method
suggested by Grassberger.

DOI: 10.1103/PhysRevE.70.067701 PACS number(s): 05.10.2a, 64.60.Ht, 02.50.2r

I. INTRODUCTION

The dynamics of spin models quenched from high tem-
perature to the critical point is a subject of considerable cur-
rent interest, because the initial phase of the relaxation(the
so-called short-time dynamics) carries important information
about static and dynamic critical behavior[1]. Using a phe-
nomenological renormalization group analysis, Janssen,
Schaub, and Schmittmann[2] demonstrated the following
scaling law for the order parameter at the critical point:

kMlstd , m0t
u, s1d

characterized by the new critical exponentu. (Here k·l de-
notes an average over initial configurations consistent with
initial magnetizationm0, and over the noise in the stochastic
dynamics.) Relation (1) holds for times t, tmax,m0

−z/x0,
wherez is the dynamic exponent andx0 its anomalous di-
mension. The “critical initial slip” described by Eq.(1)
emerges from an initially disordered state, and is character-
istic of a stochastic, far from equilibrium relaxation process.
This approach also offers a way to determine thestaticcriti-
cal exponents, since the scaling argument used to deduce Eq.
(1) can also be applied to higher moments of the order pa-
rameter, yielding

kMklst,m0d = L−kb/nkMklsL−zt,Lx0m0d. s2d

Models with absorbing states exhibit scaling behavior at
the critical point marking the transition between active and
absorbing stationary states, even though the stationary state

is not given by a Boltzmann distribution[3,4]. The order
parameter is the activity densityrù0, given by rstd
=L−doi=1

Ld
si ù0, wheresi =1s0d corresponds to the presence

(absence) of activity at sitei (d is the dimensionality of the
system). (Activity at site is commonly associated with the
presence of a “particle.”) For such models the following scal-
ing law [3] has been conjectured:

rstd , t−b/nif„sp − pcdt1/ni,td/z/N,r0t
b/ni+u

…, s3d

wherer0 is the initial density,p is a temperaturelike control
parameter,pc is its critical value, andN=Ld is the number of
sites. The exponentb is associated with the dependence of
the stationary value ofr on the control parameter:r,sp
−pcdb, while ni andn' are the critical exponents associated
with the correlation timesji ,up−pcu−nid and correlation
length sj',up−pcu−n'd. Given the defining relationji ,j'

z ,
the dynamic exponentz=ni /n'. Letting p→pc and N→`,
we expect the scaling functionf in Eq. (3) to have the
property

f f0,0,ug = Hu, u . 0

C, u → `
J , s4d

whereC is a constant.
In a realization of the process at criticalitysp=pcd begin-

ning with a completely filled latticesr0=1d, the activity den-
sity decays via the power lawrstd, t−b/ni for t!Lz. On the
other hand, in realizations starting with only a single particle
or active site (spreading process), the average number
of particles increases with time:rstd, th, where h
=sdn'−2bd /ni.

An interesting crossover phenomenon in the evolution of
rstd, between the initial increases,thd asymptotic decay
s,t−b/nid, emerges in a critical spreading process with low
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initial particle density. The crossover timetc is related to the
initial densityr0 via

tc , r0
−1/sb/ni+hd. s5d

A process starting with a single particlesr0=1/Ld corre-
sponds tor0→0 for large lattices, so thattc diverges and the
spreading regimerstd, th extends over the entire evolution.
For correlated initial conditions the evolution follows a
power law intermediate between the extreme cases men-
tioned above[5].

A method for determining the critical exponentz pro-
posed in the context of the short-time behavior of magnetic
models[6], suggests that we consider the function

F2std =
krlr0=1/Ld

krlr0=1
2 s6d

which has the asymptotic behaviorF2std, tdn'/ni = td/z. Thus
we can obtainz by analyzing short-time simulation results
with mixed initial conditions.

In this paper we employ this approach to calculatez for
the contact process(CP) and the Domany-Kinzel cellular au-
tomaton(DK), both known to belong to the universality class
of directed percolation[4]. We note that in the literature on
absorbing-state phase transitionsz is commonly used to de-
note the exponent governing the growth of the mean-square
distance of particles from the original seed, in spreading
simulations. To avoid confusion we denote the latter expo-
nent asZ, so thatR2, tZ. The dynamic exponent is then
related to the spreading exponent viaz=2/Z.

A method to estimate the exponentni was suggested by
Grassberger[7], who used the relation

Dstd ; U ] ln r

]p
U

p=pc

, t1/nz, s7d

where in a simulation the derivative is evaluated numerically
via

Dstd =
1

2h
lnSrspc + hd

rspc − hdD , s8d

which evidently requires data for values ofp slightly off
criticality. In this context a reweighting scheme that permits
one to study various values ofp in the same simulation is
particularly convenient[8].

In the following section we present details on the models
and our simulation technique. In Sec. III we report and ana-
lyze the simulation results, and in Sec. IV present our con-
clusions.

II. MODELS AND SIMULATION METHOD

The contact process was introduced by Harris as a toy
model of epidemic propagation[9]. It evolves in continuous
time. Denoting the number of occupied nearest neighbors of
site i by ni =o jPkils j, where kil denotes the set of nearest
neighbors of sitei, the transition rates are

ws0 → 1;nd =
ln

2d
screationd,

ws1 → 0;nd = 1 sannihilationd. s9d

The model suffers a continuous transition at a critical value
lc; in one dimensionlc=3.297 85s8d [4].

As described in Refs.[4,8], our simulations employ a list
of occupied sites and sample reweighting to improve effi-
ciency. Since the choice of sites is restricted to the occupied
set, the time incrementDt associated with each event(anni-
hilation or creation) is 1/Np, where Np is the number of
occupied sites immediately prior to the event. A given real-
ization of the process ends at a predetermined maximum
time, or when all particles have been annihilated. Reweight-
ing is used to study the effects of window sizeh in Eq. (8),
in determiningni for the CP, usingr0=1/L.

The Domany Kinzel (DK) cellular automaton is a
discrete-time process exhibiting a phase transition between
an active and an absorbing phase of the same kind as in the
CP [10]. Each site of the lattice can be in one of two states,
si =1 (active) or si =0 (inactive). The transition probabilities
for sistd given the values of its neighborss±1st−1d are:
Ps1u0,0d=0, Ps1u1,0d=Ps1u0,1d=p, and Ps1u1,1d=q.
This model has a line of continuous phase transitions sepa-
rating the active and absorbing phases in thep-q plane. For
q=ps2−pd the DK model is equivalent to bond directed per-
colation (DP), with pc=0.644 700. The critical behavior
along the transition line falls in the DP universality class,
with the exception of the pointp=1/2, q=1, corresponding
to so-called compact DP[10,11].

III. RESULTS

We study the time-dependent order-parameter moments
krkstdl in Monte Carlo simulations of the one-dimensional
DK and CP, obtaining time serieskrstdlr0=1/L and krstdlr0=1,
for the two initial conditions described above. Note that
these quantities are evaluated over the sample of realizations
surviving at timet. They then are combined to yieldF2 de-
fined in Eq.(6).

In these simulations we used systems of sizeL=4096
sites in Ns=50 000 independent realizations, extending to
tmax=1000. The evolution ofF2 for the two models is shown
in Fig. 1.

To determinez we divide the evolution into subintervals
equally spaced in lnt. (This avoids placing an unduly large
weight on longer times, as would occur if each integer time
were treated as a separate data point.) Analyzing our results,
we find z=1.581s1d for both the CP and the DK cellular
automaton. These results are in agreement with previous re-
sults on DP[z=1.580 745s10d [12]] obtained via a low-
density expansion, and on the CPfz=1.58077s2dg from exact
diagonalization of the master equation[13].

The local slopezt can be estimated from a least-squares
linear fit to the data shown in Fig. 1; it is plotted versusta

−1,
ta being the geometric mean of thet values over the subinter-
vals. The exponentszt andni are similarly obtained, and an
extrapolationta

−1→0 is performed. In Fig. 2 we show this
extrapolation for the CP and DK, showing convergence to-
wardsz<1.581.

The ratio
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mstd =
kr2stdlr0=1

krstdlr0=1
2 s10d

converges to the expected value for models in the DP uni-
versality class,m`.1.174 for DP ins1+1d dimensions[14].
At short times,m−1=varsrd / krl2 increases as a power law.
The associated exponent is found by noting that

x ; Ld varsrd , tfgfsp − pcdnitg →
t→`

sp − pcdg s11d

so that gsxd,x−g/ni for large x. Observing thatf=g /ni

=sdn'−2bd /ni, and thatkrl, t−b/ni, we expectm−1, td/z.
Our simulations of the CPsL=5000, Ns=10 000d confirm
the anticipated power law, and yieldz=1.577s7d.

In the determination ofni via Eq. (8), we used tmax
=2980, and a total of theNs=10 000 realizations. Figure 3
shows the nuerical derivativeDstd. For the DK cellular au-
tomaton, using systems ofL=8192 sites andDh=0.0002, we
obtain ni=1.731s9d, by extrapolating the effective exponent
nistd to t→`, consistent with the expected valueni

=1.733 847s6d [4,12]. We find that the result is quite sensi-

tive to the intervalDh used in the analysis. For example,
usingDh=0.002 we obtainni=1.65, far smaller than the ac-
cepted value.

In the implementation of Eq.(8) to the CP, we used the
reweighting method proposed in Ref.[8]. Systems of 8192
sites are again used. The sample of realizations generated at
lc is reweighted for nearby values,lc±nd, wheren is an
integer, so thatDh=2nd. As before, we analyze the local
slopenistd as a function of 1/t. The last ten points of each
curve are extrapolated to 1/t→0 to estimateni. For Dh
=0.0002 the value found via extrapolation isni=1.734s8d, in
agreement with the accepted value. The influence ofDh on
the estimate forni is shown in Fig. 4, showing convergence
to the expected value of 1.734.

IV. SUMMARY AND CONCLUSIONS

We apply several simulation methods based on analysis of
short-time behavior to determine the critical exponentsz and
ni in models exhibiting a continuous phase transition to an

FIG. 1. Time evolution of theF2 in the CP and the DK cellular
automaton.

FIG. 2. Effective exponentzstd vs 1/t in the CP and the DK
cellular automaton. Note the convergence toz<1.58 in both cases.

FIG. 3. Plot of time evolution ofDstd, Eq. (8), in the CP and the
DK cellular automaton.

FIG. 4. Plot of ni in the CP as a function ofn, where
Dh=2nd.
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absorbing state. The methods involve the ratiosF2std
=krlr0=1/Ld/ krlr0=1

2 andmstd=krstd2lr0=1/ krstdlr0=1
2 , as well as

the derivativeDstd defined in Eq.(7). We find these methods
to be quite useful determining critical exponents, since they
yield estimates in good agreement with accepted values for
the CP and the DK cellular automaton, using relatively short
simulations. We note that in the implementation of Eq.(7) to
determineni, care must be taken to use an incrementh that is
sufficiently small. One should in fact study several values of
h (which is quite feasible using sample reweighting), to iden-
tify the value below which the result no longer depends on
increment size.

We believe that the methods investigated here will be use-
ful in the analysis of other models with absorbing states, in
particular, in establishing the universality class using short-
time simulations, which are typically less computationally
demanding than studies of the stationary process.
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